B Sc Physics

Course Outcomes

On successful completion of this course, students will be able to:

Class	Sem	Course	Outcomes
F Y B Sc	Sem I	Classical Physics	 Understand Newton's laws and apply them in calculations of the motion of simple systems Use the free body diagrams to analyze the forces on the object. Understand the concepts of friction and the concepts of elasticity, fluid mechanics and be able to perform calculations using them Understand the concepts of lens system and interference Apply the laws of thermodynamics to formulate the relations necessary to analyze a thermodynamic process Demonstrate quantitative problem solving skills in all the topics covered
		Modern Physics	 skills in all the topics covered 1. Understand nuclear properties and nuclear behavior 2. Understand the type isotopes and their applications 3. Demonstrate and understand the quantum mechanical concepts 4. Demonstrate quantitative problem solving skills in all the topics covered
F Y B Sc	Sem II	Mathematical Physics	 Understand the basic mathematical concepts and applications of them in physical situations Demonstrate quantitative problem solving skills in all the topics covered
		Electricity and Electronics	 Understand the alternating current theory, Ac bridges & circuit theorem Understand Digital electronics, DC power supply Understand static electric and magnetic fields
S Y B Sc	Sem III	Mechanics and Thermodynamics	 Understand the concepts of mechanics & properties of matter & to apply them to problems. Comprehend the basic concepts of

 thermodynamics & its applications in physical situation. 3. Learn about situations in low temperature 4. Demonstrate tentative problem solving 	
3. Learn about situations in low temperature4. Demonstrate tentative problem solving	
4. Demonstrate tentative problem solving	
	e.
skills in all above areas	
Vector calculus, 1. Understand the basic concepts of	
Analog Electronics mathematical physics and their application	ons
in physical situations.	
2. Understand the basic laws of	
electrodynamics and be able to perform	
calculations using them.	
3. Understand the basics of transistor biasin	
operational amplifiers, their applications.	
4. Understand the basic concepts of oscillat	ors
and be able to perform calculations using	5
them.	
5. Demonstrate quantitative problem solvin	g
skill in all the topics covered.	
Applied Physics - I 1. Appreciate the role of Physics in	
'interdisciplinary areas related to materia	1
Bio Physics, Acoustics etc.	15,
2. Understand the scope of the subject in	
Industry & Research.	
S Y B Sc Sem IV Optics and Digital 1. Understand the diffraction and polarization	on
Electronics processes and applications of them in	
physical situations.	
2. Understand the working of digital circuit	S
3. Use IC 555 time for various timing	
applications.	
4. Demonstrate quantitative problem solvin	g
skills in all the topics covered.	0
Quantum Physics 1. Understand the postulates of quantum	
mechanics and to understand its importan	nce
in explaining significant phenomena in	
Physics.	
2. Demonstrate quantitative problem solvin	g
skills in all the topics covered.	0
Applied Physics - II 1. Understand the concepts of geophysics.	
2. Understand 8085 microprocessor, basic	
assembly language programming,	
instruction set of 8085 microprocessor	
3. Write programs for 8085 microprocessor	
4. Understand the concept of radiation, its	
types and the concept of radio	
communication.	
communication.	ile

&	Sem		doing physics practical
S Y B Sc	I,II,III, IV		2. To understand the use of apparatus and their
51250	1,11,111, 1 V		use without fear
			3. To correlate their physics theory concepts
			through practical
			4. Understand the concepts of errors and their
			estimation
T Y B Sc	Sem V	Mathematical,	1. Learn some mathematical techniques
		Thermal and	required to understand the physical
		Statistical Physics	phenomena at the undergraduate level
			2. Get exposure to important ideas of statistical mechanics
			3. Solve simple problems in probability,
			understand the concept of independent events
			and work with standard continuous
			distributions.
			4. Get idea of the functions of complex
			variables; solve non homogeneous
			differential equations and partial differential
			equations using simple methods.
		Solid State Physics	1. Understand the basics of crystallography,
		ja ta	Electrical properties of metals, Band Theory
			of solids, demarcation among the types of
			materials, Semiconductor Physics and
			Superconductivity.
			2. Understand the basic concepts of Fermi
			probability, distribution function, Density of
			states, conduction in semiconductors and BCS theory of superconductivity.
			3. Demonstrate quantitative problem solving
			skills in all the topics covered.
		Atomic and	1. The application of quantum mechanics in
		Molecular Physics	atomic physics
			2. The importance of electron spin, symmetric
			and antisymmetric wave functions and vector atom model
			3. Effect of magnetic field on atoms and its
			application
			4. Learn Molecular physics and its applications.
		Electrodynamics	1. Understand the laws of electrodynamics and
			be able to perform calculations using them.
			2. Understand Maxwell's electrodynamics and
			its relation to relativity.
			3. Understand how optical laws can be derived
			from electromagnetic principles.
			4. Develop quantitative problem solving skills.

T Y B Sc	Sem V	Elective I	1. Understand the difference between a
		Applied Component Electronic Instrumentation	 transducer and a sensor. Understand the construction, working and uses of different types of transducers. Understand the concept of signal conditioning, devices used and their operations. Get acquainted with the measuring instruments used in laboratory. Get the insight of the modern medical instruments in principle, which are used in day to day life.
T Y B Sc	Sem VI	Classical Mechanics	 Understand the kinds of motions that can occur under a central potential and their applications to planetary orbits. Learn the concepts needed for the important formalism of Lagrange's equations and derive the equations using D'Alembert's principle. Appreciate the drastic effect of adding nonlinear corrections to usual problems of mechanics and nonlinear mechanics can help understand the irregularity we observe around us in nature.
		Electronics	 Understand the basics of semiconductor devices and their applications. Understand the basic concepts operational amplifier: its prototype and applications as instrumentation amplifier, active filters, comparators and waveform generation. Understand the basic concepts of timing pulse generation and regulated power supplies Understand the basic electronic circuits for universal logic building blocks and basic concepts of digital communication. Develop quantitative problem solving skills in all the topics covered.
		Nuclear Physics	 Understand the fundamental principles and concepts governing classical nuclear and particle physics Have knowledge of their applications interactions of ionizing radiation with matter the key techniques for particle accelerators the physical processes involved in nuclear power generation.

		Special Theory of Relativity	 3. Understand the fundamental constituents of matter and lay foundation for the understanding of unsolved questions about dark matter, antimatter and other research oriented topics. 1. Understand the significance of Michelson Morley experiment and failure of the existing theories to explain the null result 2. Understand the importance of postulates of special relativity, Lorentz transformation equations and how it changed the way we look at space and time, Absolutism and
			 relativity, Common sense versus Einstein concept of Space and time. 3. Solve problems based on length contraction, time dilation, velocity addition, Doppler effect, mass energy relation and resolve paradoxes in relativity like twin paradox etc.
		Elective II	1. Analyze/design and implement
		Applied Component	 combinational logic circuits. 2. Develop assembly language programming skills and real time applications of microprocessor.
		Electronic Instrumentation	 Illustrate how to interface the I/O peripheral (PPI) with 8085 microprocessor Understand architecture, silent features, instruction set, programming and
			interfacing of 8051 microcontroller.5. Develop the programming skills in programming Language C++.
			6. Train their practical knowledge through lab experiments.
T Y B Sc	Sem V &	Practical Course	1. Understanding relevant concepts.
	VI	Core & Applied	 Planning of the experiments Layout and adjustments of the equipments
		Component	 Larjout and adjustments of the equipments Understanding designing of the experiments Attempts to make the experiments open ended
			 6. Recording of observations and plotting of graphs 7. Calculation of results and estimation of possible errors in the observation of results